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Abstract

In online two-sided marketplaces, maintaining coherency in observable item at-
tributes, such as prices, is crucial for providing users with a consistent platform
experience. For certain interventions, notably those involving price adjustments,
it is vital that all users see identical realizations of treatment to prevent con-
fusion or perception of unfairness. However, this constraint complicates causal
estimation of treatment effects due to interference between marketplace units.
To address this challenge, we propose a novel experimental design called Two-
Sided Prioritized Ranking (TSPR), which leverages the marketplace’s recom-
mender system as an experimental instrument. TSPR strategically prioritizes
items based on their treatment status while ensuring that all users have coher-

ent exposure to treatments. Through simulations using search impression data
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from an online travel agency, we demonstrate that our TSPR method accurately
estimates the Total Average Treatment Effect (TATE), while traditional baseline
item-side estimators, which also satisfy the coherency constraint, substantially

overestimate this effect.

Keywords: design of experiments, online platforms, interference, recommender systems,

position bias.

1 Introduction

Online platforms, such as e-commerce sites and online marketplaces, frequently conduct
randomized controlled experiments (e.g., A/B tests) to optimize user experience, boost en-
gagement, and drive sales. These experiments help mitigate risks associated with changes
and innovations while providing rapid product feedback (Kohavi et al., 2020; Bojinov and
Gupta, 2022; Xia et al., 2019; Xu et al., 2018; Kohavi et al., 2009).

In the context of price interventions, maintaining coherent prices across users is both a
practical necessity and a legal constraint in many jurisdictions. Showing different prices for
the same item to different users is tightly regulated, particularly under European competi-
tion law, and is considered a red-line violation by many platforms. The importance of this
coherency requirement is underscored by historical missteps: in 2000, Amazon’s experiment
with varying DVD prices led to swift consumer backlash on online forums, ultimately forc-
ing the company to issue public apologies and refunds. Since then, industry best practices
have emphasized strict price uniformity, with major platforms such as ride-sharing services
pledging that identical trips receive identical fares unless a clearly disclosed discount applies.
Informing users that a price mismatch is part of an experiment not only risks reputational
damage but also compromises internal validity by altering user behavior. While workarounds
like coupon codes or targeted promotions exist, they introduce confounding incentives that
blur the interpretation of a pure price effect. Similarly, designs that restrict access to certain
items during experimentation, either through removal or selective display, can distort user

behavior, degrade trust, and potentially harm platform revenue. For these reasons, our ex-



perimental design is explicitly constructed to maintain both price coherency and full catalog
access: all users see the same price for any given item, and all items remain discoverable and
accessible to every user.

Standard experimental designs for estimating unbiased treatment effects rely on the Sta-
ble Unit Treatment Value Assumption (SUTVA), which states that the treatment assigned
to one unit does not influence the outcomes of other units (Rubin, 1974; Imbens and Rubin,
2015). In online marketplaces, this assumption is often violated due to the interconnected na-
ture of users and items. For instance, in item-side experiments, modifying features of treated
items—such as offering discounts—can influence demand for non-treated items due to sub-
stitution or complementary effects. Such interference, spillover, or network effects have been
observed in various platforms, including ridesharing (Chamandy (2016)) and online pricing
experiments (Choi and Mela (2019)). Failing to account for interference in randomized ex-
periments can introduce substantial bias, leading to the overestimation or underestimation
of the intervention’s true impact (Blake and Coey, 2014; Fradkin, 2019).

Under interference, treatment effects depend on how interventions are distributed across
units, making the Total Average Treatment Effect (TATE) a central measure in such settings.
TATE quantifies the impact of treating all units compared to treating none (Manski, 2013;
Munro et al., 2024), and it has been widely adopted in the literature as it captures the full
extent of both direct effects and spillovers across units.

We propose the Two-Sided Prioritized Ranking (TSPR) experimental design, tailored
for item-side price interventions in two-sided marketplaces, where the outcomes of interest,
such as clicks, conversions, or bookings, are observed on the user side. TSPR strategically
reorders items within a recommender system’s ranked listing. Our approach builds on the
well-documented phenomenon of position bias, where items appearing at the top of a list
have greater influence on user behavior than those positioned lower (Craswell et al., 2008;
Friedberg et al., 2022). Recommender systems, which match items to user queries, are the
primary ranking mechanism in online marketplaces. Our design leverages this structure
to provide a systematic approach for estimating the TATE of item-side interventions on
user-level outcomes. TSPR is specifically tailored to two-sided marketplaces, platforms like

Expedia or Airbnb, where users interact with ranked lists of items curated by a central



system.

In the TSPR design, users are randomized into two groups, and items are partitioned
into three subsets: the Treated group, which receives the intervention, and two distinct
groups that do not, called Untreated and Placebo. For one group of users, the recommender
system prioritizes Untreated items at the top of search results, while for the other group,
it prioritizes Treated items. Having both Untreated and Placebo groups, with Untreated
matching the size of the Treated group, ensures the balanced quality of top-ranked items
across user groups. We then estimate TATE by comparing partial outcomes between the
two groups of users, where partial outcomes are defined as the cumulative outcome of the
prioritized Treated or Untreated items placed at the top of the listings.

To evaluate our methodology, we use an open-source dataset of hotel search impressions
from Expedia containing consumer queries, clicks, and booking outcomes. We develop a
model of click and booking behavior to generate semi-synthetic data for our Monte Carlo
simulations. We simulate a treatment resembling a platform-wide price increase on listed
items, which, if applied to all items, reduces the user conversion rate by 0.050. We then com-
pare two estimators across 500 simulation runs. Across simulations, our proposed method
estimates TATE with an average of -0.047 and an average bootstrapped standard error of
0.016. In contrast, a naive estimator, which compares the average booking rate between
treated and non-treated items, significantly overestimates TATE, producing an average es-
timated effect of -0.091 and an average standard error of 0.014. We selected this naive
estimator as our baseline because it preserves a consistent item view across users—a crit-
ical requirement for price experiments. By contrast, methods such as switchback designs
or network-based estimators, though valuable elsewhere, violate this consistency and are
therefore less suitable for our context.

A key advantage of our design is its ability to preserve a coherent user experience during
experimentation. It ensures that no user loses access to any items, regardless of their ran-
domized group assignment, and provides a consistent realization of item treatment across all
users. For price interventions, this means all users see the same prices for the same items. A
coherent user experience is crucial for online platforms, as it fosters trust, satisfaction, and

long-term engagement (Véliz, 2023; Kahneman et al., 1986; Kohavi et al., 2020). However,



many existing methods for estimating TATE in two-sided platforms disrupt the user expe-
rience, limiting their practicality for real-world deployment. Switchback testing (Robins,
1986; Sneider and Tang, 2019; Bojinov et al., 2023), for example, alternates treatment as-
signments over time for the same units, enabling individual-level causal estimation but at
the cost of user experience coherency. Frequent treatment fluctuations, such as dynamic
pricing changes, not only risk confusing users and distorting engagement patterns but may
also introduce carryover effects that compromise internal validity.

Our proposed randomization framework is similar in spirit to two-sided randomization
(TSR) methods (Johari et al., 2022; Bajari et al., 2023), which apply independent random-
ization on both the user and item sides. However, existing TSR designs often do not enforce
a coherent user experience: treatment is typically applied only when treated users interact
with treated items, which means that different users may be exposed to different versions
of the same item (e.g., different prices). In contrast, our two-sided randomization frame-
work ensures a consistent realization of item treatment—every user sees the same version
of a given item—while preserving universal access to all items. Despite growing attention
to ethical and responsible experimentation in online platforms (e.g., Polonioli et al., 2023;
Saint-Jacques et al., 2020), the importance of maintaining user experience coherency within
experimental design has received limited attention. By incorporating coherency as a core
design principle, our approach is the first to bridge this gap in the causal inference literature
for two-sided platforms, while retaining the key statistical benefits of TSR.

Maintaining statistical power is another key strength of our design, as it randomizes at
the user level and avoids the limitations imposed by cluster-based approaches. Cluster-based
randomization groups related users or items to minimize spillover effects, but suffers from
reduced power (Ugander et al., 2013; Eckles et al., 2017; Holtz et al., 2024). Moreover,
defining appropriate clusters in dynamic marketplace environments is often infeasible, and
poor cluster definitions can lead to severe power loss and unreliable TATE estimates. Even
when suitable clusters can be defined, implementing cluster-based randomization can be
computationally expensive and operationally complex (Candogan et al., 2023).

Although mitigating interference in ranking experiments has been studied (e.g., Goli

et al., 2024; Zhan et al., 2024; Nandy et al., 2021; Ursu, 2018), this prior work typically



focuses on evaluating ranking algorithms themselves. In contrast, we treat the recommender
system not as the subject of experimentation but as a tool for implementing the experiment.
By integrating recommender systems into experimental design in this way, we bridge the
gap between ranking mechanisms and causal inference methods. To the best of our knowl-
edge, this study is the first to propose using recommender systems as an instrument for
experimentation in online platforms.

The remainder of this paper is organized as follows: Section 2 formally defines the Two-
Sided Prioritized Ranking experimental design and outlines our estimation methodology.
Section 3 details the data and simulation setup, followed by the results in Section 4. Finally,

Section 5 concludes the paper.

2 Methodology

2.1 Two-Sided Prioritized Ranking (TSPR) Experimentation Setup

We model a two-sided platform as a matching mechanism between a set of queries ¢ € @,
representing user inputs, and a set of items ¢ € I, representing available options. The
platform uses a recommender system to compute relevance scores r,; € R for each query-item
pair based on the attributes of the query ¢ and the item ¢, such as user preferences and item
features. Once query ¢ is submitted, the platform ranks the available items in descending
order of their relevance scores r,; and presents the ranked list to the user. When a user views
the listed items, their interactions determine the outcomes y,; for each displayed item. For
simplicity, we assume all items initially have outcome values of 0, and post-interaction, y,;
takes non-negative real values, representing outcomes such as clicks, bookings, or revenue.
Additionally, since we assume each user submits exactly one query, we use the terms “user”
and “query” interchangeably.

In the aforementioned setting, standard A /B testing with randomized item-level interven-
tion assignment fails to produce unbiased treatment effect estimates due to the interference
between items in the same query, which violates SUTVA. Furthermore, the proposed exper-

imental design must satisfy two key constraints: preserving universal user access to all items



throughout the experiment and maintaining coherent item treatment status across users.

Definition 1 (Coherency). A user experience is said to be coherent if all users retain access
to the same set of items and view a consistent realization of each item’s treatment status,

regardless of their group assignment.

Due to item-side interference, the effect of a binary treatment 7" € {0,1} on item-query
outcomes y,; depends on the distribution of interventions across units. This motivates our
focus on the Total Average Treatment Effect (TATE), which captures both direct effects
and spillovers by measuring the difference in expected outcomes between full treatment and
no treatment conditions. Given our interest in TATE, we focus on query-level outcomes
Y, = >, Yq.i, which aggregate individual item-query outcomes across all items displayed in
response to query ¢. For notational simplicity, we omit the query subscript ¢ and denote

query-level outcomes as Y. Formally, we denote TATE by 6 and define it as:
O=E[Y|VieT:icT'|-E[Y|VieZI:icI (1)

where Z' = {i € [ | T; = 1} and Z° = {i € I | T; = 0} denote the sets of treated and non-
treated items, respectively. Since each item can only be assigned to one treatment condition
(T; = 1or T, = 0) at a time, only one of the two terms on the right-hand side of the equation
is observable at any given point.

The proposed method rests on a few implicit assumptions. First, we assume that items
at the top of the listings are significantly more influential on users’ behavior (Craswell et al.
(2008)), and the influence of items gradually vanishes as we move further down the list.
Consequently, the effective exposure of a user to the treatment depends on the extent to which
treated items appear near the top of the ranked list, as these items receive a disproportionate
share of the user’s attention. By strategically changing the ordering of items, we alter the
effective exposure of a user to the treatment. Second, our method requires the average
number of relevant items per query to be sufficiently large to ensure that the repositioning
scheme is effective in maximizing the exposure to treated items for one group of queries while
minimizing it for the other. Third, we assume that user-side interference is negligible (e.g.,

slack supply) and the primary source of interference is the interdependence among outcomes
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of the items displayed under the same listing.
Our proposed experimental design for estimating TATE is summarized in Table 1, with
Figure 1 illustrating the two-sided randomization scheme and group-specific listing priorities

for query results.

Table 1: Two-Sided Prioritized Ranking (TSPR) Experimental Design

Experiment Setup

1. Set the probability of receiving treatment for an item p < 0.5, and minimum
relevance threshold r.

2. Randomize items into Treated, Untreated, and Placebo subsets with probabilities p,
p, and 1 — 2p, respectively. Apply the treatment only to the Treated group.

3. For each incoming query ¢:

3.1. Randomly assign ¢ to Q“ or QP and set the item priorities as follows:

e If ¢ € Q4: 1-Untreated, 2-Placebo, and 3-Treated.
o If ¢ € QB: 1-Treated, 2-Placebo, and 3-Untreated.

3.2. Filter the set of relevant items with r,; > r.

3.3. Rank items primarily by priority (ascending) and secondarily by relevance
score (descending).

As outlined in Table 1, after specifying the global parameters p and r, we begin by par-
titioning items into three subsets: Treated, Untreated, and Placebo, with probabilities p,
p, and 1 — 2p, respectively. The intervention is only applied to the items in the Treated
subset. Incorporating the Placebo subset serves a crucial purpose in maintaining experi-
mental balance. Without a Placebo subset, when p < 0.5, the Untreated subset would be
larger than the Treated subset, creating an asymmetric effect in step 3 of our design. Specif-
ically, for queries in Q4 for which we prioritize non-treated items, the larger Untreated pool
would yield top-ranked items of higher average quality compared to the top-ranked items
from the smaller Treated pool shown to Q. This imbalance would cause the recommender
system’s modification to impact Q4 and QF differently, confounding our ability to isolate

the intervention’s effect. The Placebo subset ensures that the Treated and Untreated are



Figure 1: Two-Sided Prioritized Ranking (TSPR) Experimental Design

Queries

Ordered list of items

Notes: The figure illustrates the TSPR experiment setup. Items are partitioned into three groups, and
queries are divided into two subsets. The relevant items for each query are first ordered based on their
group-specific priority and then by their relevance score.

roughly equal in size, making the expected match quality per rank comparable between the
two groups.

In the next step, the stream of incoming queries are randomized into Q4 or Q” with equal
probability. Then, depending on the randomized allocation, item priorities are assigned such
that queries in Q4 will face items in the following order: Untreated, Placebo, and Treated,
while the queries in Q®, will be given items in the order of Treated, Placebo, and Untreated.
Before returning the listings, items are filtered to ensure that only items of sufficient relevance
are displayed to users. Modifying the recommender system may potentially cause poor-
quality matches to be included in the listing, degrade user experience, and create large
distortions in user behavior. To address this concern, we introduce a filtering parameter,
denoted r, and only items with a relevance score r,; > r are included in the final listing.
The choice of r involves a trade-off and should be chosen carefully: setting it too low risks
including irrelevant items that could deteriorate user experience, while setting it too high

might result in queries receiving an insufficient number of items to display.



2.2 TATE Estimation

Building on the observations from the experimental method described above, we propose an
estimator for the Total Average Treatment Effect (TATE) that does not require specifying
an exposure mapping or imposing strong assumptions about substitution patterns among
items.

The experimental design produces data with two important characteristics. First, because
the recommender system prioritizes items rather than exclusively displaying those from one
subset, queries in QF may see some non-treated items, while queries in Q4 may encounter
some treated items. Second, the number of Treated (or Untreated) items appearing at
the top of listings varies across queries based on item availability and relevance. These
characteristics necessitate an assumption about how the intervention’s expected impact on
query-level outcomes relates to the number of treated items placed at the top of listings.

We define partial outcome, denoted by Y! = 22:1 y', as the cumulative outcome of
the first [ listed items. Given the assumption that individual item-level outcomes are non-
negative (y; > 0), the expected value of the partial outcome, E[Y], is non-decreasing in ,
which reflects the fact that including additional items in the calculation of outcome can only
increase or maintain the total observed outcome. Similarly, we define the partial treatment
effect, 0', as the expected effect on partial outcome, Y, from applying the intervention only

to the first [ listed items. That is,
O =E[Y'|Vi<l:i€cT'"AVi>1:icI] - E[Y'YVi:icI. (2)

Assumption 1. For all values of [, the partial treatment effect, #', is a fraction of the total
treatment effect, 6, by a factor of the ratio of the expected partial outcome to the expected
total outcome in the absence of treatment. Formally,

_ E[Y!|Vi:ieT
T E[YVi:ieI

6 6, Vi (3)

The assumption above allows us to aggregate the outcomes of queries faced with different

numbers of Treated or Untreated units at the top of their corresponding listings. Due to the
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declining item influence down the listing position, as [ increases, the marginal contribution to
the expected partial outcome E[Y!] decreases. Consequently, the marginal effect of treating
an additional item at rank [ gradually approaches zero as we move further down the listing,
reflecting the diminishing impact of lower-ranked items on the query-level outcome.

In the TSPR design, the first term in the RHS of Equation 2 corresponds to queries
in QP where the Treated block contains [ items. The second term represents the expected
partial outcome Y when no items in the list are treated. Under TSPR, this quantity is only
observed when there are no relevant Treated units for a query in @, a scenario that may be
rare in practice, making direct estimation difficult. Given our assumptions that each query
has a relatively large number of available items and that lower-listed items have negligible

impact on user behavior, we propose the following approximation:
E[Y'|Vi:i € I = E[Y'|Vi < [ :i € I°] (4)

where [ denotes the number of Untreated items. This term can be represented by a query
in Q4 with a block of [ Untreated items. The introduction of Placebo items in our design
further supports the validity of this approximation.

Using Equations 1, 2, 3, 4, and assuming for all [, E[Y!|Vi <1 :i € Z°] > 0, we have:

0 ~E[Y|Vi:ieI
(EYViSliie T AYi> i €T - EYVi<lii € T (5)
E[Y!¥i <i:i€e 1

for any choice of .

Equation 5 establishes a connection between the observable differences in partial out-
comes from experimental data and the TATE. The first term on the RHS of the equation
can be estimated by running a pre-experiment phase in which the modified recommender
system is deployed with the same composition of Treated, Placebo, and Untreated items,
before applying any treatment to the items in the Treated group. The second term on the
RHS of the equation can be estimated during the experiment using the relative difference in

partial outcomes between queries in Q4 and Q? that have exactly [ Untreated and Treated
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items at the top of their listings.
To provide a single estimate of TATE, we need to combine the estimates resulted from
all observed values of [ having at least one correspondent query in Q4 and Q”. Here, we use

frequency weighting and estimate TATE as,

R L B ;Z BYé — LAZ AYA B A
=1

W = —m———r
o San Vi Q7 1A

where QP (Qi') denote queries in QP (Q#) for which the number of Treated (Untreated)
items was equal to [, and Y} is the expected outcome estimated using pre-experiment phase

with the modified recommender system. Standard errors can be obtained via bootstrapping.

3 Data and Simulation

To illustrate our methodology, we use an open-source dataset of hotel search impressions from
Expedia (Adam et al., 2013), capturing consumer queries and their corresponding search
behaviors—specifically, clicks and booking outcomes—over an eight-month period spanning
2012 and 2013. The dataset encompasses nearly 10 million observations derived from ap-
proximately 400,000 unique search impressions. Each search impression represents the result
of a consumer query, providing a list of hotels along with their observable characteristics.

Consumers interact with the platform in three stages. First, consumers initiate queries
by specifying trip details (destination, travel dates, booking window, etc.). Second, they
receive a ranked list of hotel results through an experimental setup: two-thirds of users
see listings ranked by the platform’s original recommender system, while the remaining one-
third encounter randomly sorted results. This experimental variation in ranking mechanisms
allows us to model how item positions influence click and booking behavior. Finally, users
engage by clicking on hotels to view details and may either complete a booking or leave
without purchasing.

To evaluate our experimental design, we implement a series of Monte Carlo simulations
that replicate consumer interactions in an online two-sided marketplace, incorporating query-

driven item ranking, click behavior, and booking decisions. We assume that the platform

12



Table 2: Summary Statistics of Search Impressions

Mean Median Min Max

Randomized Ranking (Yes=1)  0.30 0 0 1
Total Hotels per Impression 24.56 29 4 33
Clicks per Impression 1.11 1 1 30
Bookings per Impression 0.69 1 0 1

maintains a pool of available items, denoted as N, and displays a subset n, in response to
each query.

To model user interactions, we assume that each item displayed to a consumer has a net
(hidden) utility, denoted as v. The relevance score r, which represents the recommender
system’s match score between a consumer’s query and an item, is modeled as r = v 4 ¢
with ¢ following a normal distribution N (0,0?%). We assume that the original ranking system
is decreasing in . However, for randomly ranked search impressions, the sorting order is
determined randomly.

Click probabilities are modeled as a logistic function of the raw and quadratic rank
values, hidden utilities, and prior user clicks on lower-ranked options. Booking decisions are
modeled as a logit choice among clicked items, depending solely on net utility v. To ensure the
simulation aligns with real-world behavior, hyperparameters o. and n, are selected to match
simulated conversion rates with observed data. This is achieved through an iterative process,
where click and booking parameters are first estimated using the data-generating process,
followed by user action simulations. The simulated conversion rates are then compared with
empirical rates, and hyperparameters are adjusted to minimize discrepancies. Figure 2 shows
that the simulated click-through rate closely matches the observed data, demonstrating the
convergence of the simulation to real-world behavior.

Table 2 presents summary statistics at the search impression level, highlighting key pat-

terns in click and booking behaviors across random and relevance-based rankings.

4 Results

We conduct counterfactual simulations for 20,000 queries using our estimated models of click

and booking behavior. First, to establish a simulated ground truth for TATE, we simulate
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Figure 2: Click-Through Rate by Item Rank
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Notes: This figure presents the actual click-through rate (CTR) and
the simulated CTR as a function of item position in the query results
from a hold-out sample not used in the estimation of the click and
booking models.

the marketplace under two extreme scenarios: one where no items receive treatment and
another where all items are treated. The treatment is implemented as a constant reduction
in users’ hidden utility from booking an item, resembling the effect of a platform-wide price
or markup increase, which translates to a 0.05 decrease in the conversion rate. In these
simulations, we maintain the recommender system without any modifications.

We then implement our Two-Sided Prioritized Ranking (TSPR) experimental design to
estimate TATE in a setting where treatment is applied to 25% (p = 0.25) of the items.
Following our methodology, we randomly assign each query to either group A or B with
equal probability. For one group, the recommender system is modified to prioritize Treated
items in the ranking, while for the other group, it prioritizes Untreated items. The remaining
items are positioned according to the experimental design outlined in Table 1, maintaining
access to all items while creating the necessary variation in exposure to treatment.

Additionally, to form a baseline for comparison, we simulate an item-side randomized ex-
periment, which is an extension of the Horvitz-Thompson estimator Horvitz and Thompson

(1952) to two-sided platforms and commonly used as a baseline in the literature (e.g., Johari
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Figure 3: TATE Estimates
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Notes: The figure presents Total Average Treatment Effect (TATE)
estimates from 500 simulated experiments. The vertical dashed line
represents the ground truth TATE, corresponding to a 0.05 reduction
in booking rate. Panel (a) plots the histogram of TATE estimates from
the TSPR method with 25% treatment coverage (p = 0.25), yielding
an average estimate of -0.047 (average bootstrapped SE: 0.016). Panel
(b) plots the histogram of TATE estimates from the naive estimator
under the same conditions, yielding an average estimate of -0.091 (av-
erage bootstrapped SE: 0.014). TATE estimates with 95% confidence
intervals that contain the ground truth are shown in bold color.
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et al., 2022; Bajari et al., 2023). In this setup, items are randomly assigned to the treatment
group (7T") with probability p or the control group (C') with probability 1 — p. However, no
randomization at the query level takes place. TATE is estimated as the difference in means
of total outcomes per query, adjusted by the inverse of the inclusion probability of treated
and control items:

ZieT quQ Yq,i Ziec quQ Yq,i

T TR (Il "

where () denotes the set of all queries, and y,; represents the outcome for item 7 in query ¢ .

Figure 3 presents the distribution of the TATE estimates from the TSPR setup and
contrasts it with the distribution of 915 across H00 runs. TSPR estimates TATE with an
average of -0.047 (average bootstrapped SE: 0.016). In contrast, the baseline estimator
significantly overestimates the effect with an average of -0.091 (average bootstrapped SE:
0.014), roughly double the true value, despite using a similar treatment group size. This
overestimation occurs because the baseline approach fails to account for interference between
treated and non-treated items within the same listing. The proportion of the TATE estimates
with 95% confidence intervals that contain the ground truth TATE (-0.05) is considerably
larger for TSPR compared to the baseline estimator.

The relevance threshold parameter r serves a dual methodological and practical purpose:
maintaining partial outcomes close to the original recommender system while preserving
user experience through quality control of top-positioned items. In practice, platforms can
determine an appropriate value for r using historical data or pre-intervention experiments
with the modified recommender system, allowing them to balance the trade-off between
listing quality and estimates’ accuracy. In our simulations, we set r = 1.7 to keep partial
outcomes under the modified recommender system close to the baseline case, as illustrated
in Figure 4. The figure demonstrates that marginal contributions to partial outcomes are
substantial for small values of [ but rapidly diminish with increasing position. This supports
our approximation (4) suggesting minimal contributions from items down the list.

Figure 5 examines the robustness of our estimates to the choice of relevance threshold r.
The TATE estimates remain relatively stable under moderate changes in r, suggesting that

our methodology is robust to the specific choice of this parameter. However, as illustrated,
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Figure 4: Partial Outcomes Across Ranks
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Notes: The figure plots the partial outcomes Y' for rank [, in four
scenarios across 100 simulations. The first two scenarios are under
the unmodified recommender system with no treatment (p = 0.0) and
full treatment (p = 1.0). The other two scenarios illustrate the par-
tial outcomes for Q4 and QP in the simulated experiments when the
probability of assignment to both the Treated and Untreated group is
p = 0.25.
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higher values of r restrict the number of Treated or Untreated items that qualify for top
positions and reduce the range of block sizes available for estimation in Equation 5, leading

to larger standard errors in our estimates.

Figure 5: Sensitivity Analysis of the TATE Estimates to r
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Notes: The figure illustrates the TATE estimates and their 95% boot-
strapped confidence intervals for different choices of r from 100 simu-
lated experiments in the TSPR setup when the probability of assign-
ment to both the Treated and Untreated group is p = 0.25.

5 Conclusion

This paper introduces a novel experimental design for two-sided marketplaces that lever-
ages recommender systems to estimate the Total Average Treatment Effect (TATE) while
addressing interference and maintaining a coherent user experience. By reordering items
in query listings, our Two-Sided Prioritized Ranking (TSPR) design minimizes bias from
network spillovers and ensures equal access to items for all users. Using a semi-synthetic
dataset of hotel search impressions, we demonstrate that our design provides reliable TATE
estimates while a standard item-side estimator significantly overestimates TATE.

The TSPR method is particularly designed for platforms relying on ranking algorithms,

such as e-commerce sites and online marketplaces. Our design enables such platforms to
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estimate treatment effects while maintaining a coherent user experience and preserving plat-
form functionality. It addresses concerns regarding unintended consequences of randomized
experiments, such as user disengagement or inequitable access to items.

Our paper opens promising avenues for future research. First, although we evaluate our
method using semi-synthetic data, validating it with real-world data from diverse platforms
would enhance its generalizability and provide deeper insights into its practical implementa-
tion. Second, our design focuses on item-side interventions and assumes negligible cross-user
interference. Extending it to user-side interventions or settings with significant cross-user

interference remains an open challenge and would greatly expand its applicability.
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