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Abstract

Estimating individual-level bias in settings with bilateral interactions is
challenging because evaluator preferences and item characteristics con-
found the relationship between group membership and outcomes. We
develop a methodology that combines “Honest” Collaborative Filter-
ing (HCF) with Double Machine Learning (DML) to separate genuine
bias from preference-based differences. The first stage extracts latent
representations of evaluator preferences and item characteristics from
observed ratings, using an “honest” design that estimates preferences
using only control-group items to prevent contamination by treatment
effects. The second stage applies DML to estimate unit-level bias pa-
rameters while controlling for these learned embeddings. Monte Carlo
simulations demonstrate that HCF+DML substantially outperforms
naive OLS estimation under confounding, reducing RMSE by up to
50% and maintaining high correlation with true parameters even un-
der embedding misspecification and non-random selection. We apply
the method to nearly 150,000 film reviews from professional critics
to estimate gender-based bias in evaluations of female-directed films.
Naive comparisons suggest that 29% of critics exhibit statistically sig-
nificant favoritism toward female directors. After controlling for the
match between critic preferences and film characteristics, this figure
drops to under 1%. The apparent pro-female pattern largely reflects
critics’ preferences for genres where female directors are disproportion-
ately represented, rather than gender-based favoritism per se.

Keywords: Discrimination, Bias, Collaborative Filtering, Causal Machine Learn-
ing, Double Machine Learning

JEL Codes: C14, C21, J71, L82

1Lyft. Email: mhyrhabibi@gmail.com.
2University of Washington. Email: zkhnl@uw.edu.
3University of Warwick. Email: negar.ziaeian-ghasemzadeh@warwick.ac.uk.

1

mailto:mhyrhabibi@gmail.com
mailto:zkhnl@uw.edu
mailto:negar.ziaeian-ghasemzadeh@warwick.ac.uk


1 Introduction

Discrimination in employment, credit, housing, and other markets remains a cen-
tral economic and policy concern. In many settings, regulators and researchers
need more than an estimate of average discrimination. They need to identify which
specific decision-makers systematically treat otherwise comparable individuals dif-
ferently based on protected attributes such as gender, race, or age. This task is
straightforward in field experiments and correspondence studies, where character-
istics can be randomized and average treatment effects can be measured cleanly
(Bertrand and Mullainathan, 2004a; Bertrand and Duflo, 2017). It is much harder
in observational data, where decisions reflect unobserved heterogeneity in prefer-
ences, beliefs, and matching patterns, and where each decision-maker is observed
in only a sparse subset of possible interactions.

This paper develops a method to estimate individual-level discrimination from ob-
servational data in bilateral interaction settings. We study environments where
units on one side of the market evaluate multiple items or individuals on the other
side, and where each item is evaluated by many units. Examples include firms
evaluating applicants, lenders evaluating borrowers, landlords evaluating tenants,
and critics evaluating films. In these environments, observed outcomes confound
at least three forces. First, evaluators have stable latent preferences for certain
characteristics. Second, items have latent attributes that directly affect outcomes.
Third, evaluators may apply different standards to items associated with a pro-
tected attribute. Separating the third channel from the first two is the core iden-
tification problem.

We focus on a parameterization that aligns with the economics of discrimina-
tion. Following the distinction between taste-based and belief-based discrimina-
tion (Becker, 1957; Arrow, 1973; Phelps, 1972), we treat discrimination as an
evaluator-specific causal effect of a protected attribute on the evaluator’s decision,
holding constant the evaluator’s latent preferences and the item’s latent charac-
teristics. The object of interest is a unit-level bias parameter, θj, which measures
how evaluator j changes outcomes when the protected attribute changes, net of
latent match quality. Estimating θj from observational outcomes requires a con-
trol strategy for high-dimensional confounding that is typically unobserved and
not directly measured.

Our central contribution is a new estimator that combines collaborative filtering
with double machine learning to recover unit-level discrimination. Collaborative
filtering has become a workhorse method in recommender systems for learning low-
dimensional embeddings of users and items from sparse outcome matrices (Koren
et al., 2009a). We repurpose this machinery for causal inference. The embeddings
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summarize latent evaluator preferences and latent item characteristics that would
otherwise confound estimates of discrimination. We then use Double/Debiased
Machine Learning (DML) (Chernozhukov et al., 2018a) to estimate evaluator-
specific treatment effects while flexibly controlling for these high-dimensional em-
beddings and other observables. DML provides orthogonalization and cross-fitting
that allow valid inference on causal parameters even when nuisance functions are
learned with modern machine learning methods.

A key challenge is that naive embeddings can leak information about treatment
status into the representation itself. If we learn evaluator and item embeddings
using all observed outcomes, the latent factors may partially encode the protected
attribute and the discrimination signal we aim to measure. This violates the
spirit of causal identification because the representation becomes endogenous to
treatment. To prevent this, we introduce Honest Collaborative Filtering (HCF),
inspired by the honest estimation principle in Athey and Imbens (2016a). In
our setting, honesty means that preference embeddings are learned using data
that exclude treated observations. Concretely, we train collaborative filtering only
on untreated interactions (for example, ratings of male-directed films) to obtain
preference embeddings that capture stable tastes and match structure without
directly absorbing the treatment signal. We then hold these embeddings fixed
and estimate unit-level bias parameters using DML. This design mirrors the logic
of honest trees and forests, where the data used for model selection are separated
from the data used for estimation, thereby reducing contamination of the estimand
by adaptive representation learning.

This perspective clarifies how our paper relates to existing work in causal machine
learning and recommender systems. A growing literature studies causal inference
for recommendation, where causal tools are used to debias recommender systems,
estimate causal effects of exposure, or improve counterfactual ranking and eval-
uation. Our goal is different. We develop recommendation for causal inference.
We use collaborative filtering as a measurement device that constructs controls
from the structure of sparse bilateral interaction data, enabling causal identifi-
cation of discrimination parameters that are not about the recommender system
itself. The distinction is important because the representation is not the target of
improvement in our setting. It is an input to a causal estimator whose target is a
well-defined unit-level treatment effect.

Our method is designed for settings where (i) rich covariate data on items is
unavailable, (ii) covariates are protected by privacy constraints, or (iii) the relevant
confounders are latent and cannot be directly measured. Many bilateral evaluation
settings—peer review, Airbnb ratings, hiring decisions—lack the rich covariate
data, making HCF+DML particularly valuable.
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We also emphasize what this paper is not about. The algorithmic fairness literature
evaluates whether machine learning systems produce disparate outcomes and stud-
ies constraints or impossibility results for fair prediction (Kleinberg et al., 2017;
Chouldechova, 2017). Our objective is instead to use machine learning to detect
discriminatory human decision-makers. The concern is not whether an algorithm
discriminates, but whether evaluators do, after controlling for latent preferences
and latent item attributes that shape outcomes.

Our approach complements recent progress on identifying decision-maker hetero-
geneity in discrimination using experimental audit data (Kline and Walters, 2021;
Kline et al., 2022a, 2023). Those papers provide sharp identification by design
and deliver unit-level inference by combining experimental variation with multiple
testing control. However, they require large-scale experiments and are infeasible in
many settings where rich observational interaction data already exist. We provide
a method that can be applied when experimental manipulation or quasi-random
assignment is unavailable, but where the bilateral interaction structure is informa-
tive and outcomes are plentiful.

We make three contributions. First, we introduce an estimator, Honest Collabo-
rative Filtering + DML, that identifies unit-level discrimination parameters from
observational bilateral interaction data. Second, we propose an honest represen-
tation learning design for collaborative filtering that prevents treatment leakage
into preference embeddings, adapting the honest estimation logic of Athey and
Imbens (2016a) to matrix factorization. Third, we show how to integrate these
embeddings into a DML pipeline to obtain valid unit-level causal estimates and in-
ference in high-dimensional settings (Chernozhukov et al., 2018a). Together, these
components allow discrimination measurement with minimal input requirements:
a record of who interacted with whom and the resulting outcome.

We evaluate the method in both controlled simulations and an empirical applica-
tion. In Monte Carlo experiments that simulate a gender-differentiated evaluation
process with sparse matching, latent preferences, and latent item characteristics,
we compare our estimator to a benchmark OLS approach that does not adequately
control for latent confounding. We study performance across confounding regimes
and show how honesty in the embedding stage affects bias and variance of unit-level
estimates. We then apply the method to film ratings data from Metacritic, using
nearly 150,000 critic-film ratings covering over 8,000 films to estimate critic-level
bias toward female-directed films. The empirical results illustrate why latent pref-
erence control matters. Naive approaches can attribute systematic taste differences
and selection patterns to discrimination, producing inflated counts of “significant”
decision-makers. Our method sharply reduces these false positives and isolates
the subset of evaluators whose rating behavior is consistent with a causal effect of
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director gender.

The remainder of the paper is organized as follows. Section 2 situates our contribu-
tion in the literatures on discrimination, causal machine learning, and collaborative
filtering. Section 3 presents the model, the HCF construction, and the DML esti-
mation and inference procedure. Section 4 presents the application to film critics.
Section 5 reports simulation results. Section 6 concludes.

2 Literature Review

This paper contributes to several interconnected strands of research spanning the
economics of discrimination, causal machine learning, collaborative filtering, algo-
rithmic fairness, and the identification of latent structure in networked data. We
draw connections across these literatures while identifying the specific gaps our
methodology addresses.

The economic analysis of discrimination has developed around two principal theo-
retical frameworks. Becker (1957) introduced taste-based discrimination, modeling
prejudice as a preference parameter whereby discriminating agents act as though
they are willing to pay a cost—either directly or through reduced income—to
avoid interaction with members of certain groups. In contrast, statistical discrim-
ination, formalized by Arrow (1973) and Phelps (1972), posits that differential
treatment arises not from animus but from rational inference under incomplete
information: when individual productivity signals are noisy, decision-makers may
rely on group-level statistics, generating disparate outcomes even absent prejudice.
Empirical detection of discrimination has proceeded along two main avenues. Cor-
respondence studies pioneered by Bertrand and Mullainathan (2004b) send ficti-
tious applications with randomly assigned characteristics to employers, providing
clean experimental identification of differential treatment. Their seminal study
documented that resumes with distinctively White-sounding names received 50
percent more callbacks than identical resumes with African American-sounding
names. While such experiments provide compelling evidence of average discrim-
ination, they face important limitations: they are costly to implement, ethically
constrained in many settings, and typically identify only aggregate effects rather
than which specific decision-makers discriminate.

Recent work has advanced toward detecting discrimination at the decision-maker
level. Kline et al. (2022b) conducted a massive correspondence experiment send-
ing over 83,000 fictitious applications to 108 of the largest U.S. employers, finding
that distinctively Black names reduced contact rates by 2.1 percentage points on
average. Crucially, they documented substantial between-firm heterogeneity, with
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a standard deviation in racial contact gaps of 1.9 percentage points across firms.
Using empirical Bayes methods, they identified 23 individual companies that dis-
criminate against Black applicants while controlling the false discovery rate. This
represents a methodological advance toward unit-level discrimination detection,
though it still relies on experimental variation. An alternative approach exploits
quasi-experimental variation from random assignment of decision-makers. Arnold
et al. (2018) developed a test for racial bias in bail decisions building on the Becker
framework. Their insight is that if judges are unbiased, marginal defendants of
different races should exhibit identical misconduct rates conditional on release.
Using the leniency of quasi-randomly assigned bail judges as an instrument, they
find that marginally released White defendants have substantially higher miscon-
duct rates than marginally released Black defendants, consistent with racial bias
against Black defendants. This methodology elegantly identifies bias at the mar-
gin but requires quasi-random assignment of cases to decision-makers—a feature
unavailable in many economically important settings. Our paper complements
this literature by providing an observational method for detecting individual-level
discrimination in bilateral interaction settings where experimental manipulation is
infeasible and no natural experiment provides quasi-random assignment.

The application of machine learning to causal inference has expanded rapidly, mo-
tivated by the recognition that modern ML methods excel at prediction but do not
automatically deliver valid estimators of causal parameters. Chernozhukov et al.
(2018b) introduced Double/Debiased Machine Learning (DML), demonstrating
how ML can be used to estimate high-dimensional nuisance parameters while main-
taining valid inference on low-dimensional parameters of interest. Their framework
rests on two key ingredients: Neyman-orthogonal moment conditions that reduce
sensitivity to nuisance parameter estimation error, and cross-fitting to prevent
overfitting bias from contaminating causal estimates. The resulting estimators
achieve

√
n-consistency and asymptotic normality under weak conditions on the

ML learner’s convergence rate. A parallel literature has developed methods for
estimating heterogeneous treatment effects. Athey and Imbens (2016b) proposed
causal trees that adapt recursive partitioning to discover subpopulations with dif-
fering treatment effects. Their central innovation is “honest” estimation, whereby
one sample is used to construct the partition and a separate sample to estimate
treatment effects within each cell. This sample-splitting ensures valid confidence
intervals even when the partition is data-driven. Wager and Athey (2018) ex-
tended this approach to causal forests, providing theoretical results establishing
pointwise consistency and asymptotic normality for random forest estimators of
conditional average treatment effects. Our methodology synthesizes insights from
both the DML and HTE literatures. Following Chernozhukov et al. (2018b), we
treat collaborative filtering embeddings as high-dimensional nuisance parameters
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and employ cross-fitting to prevent overfitting contamination. Inspired by Athey
and Imbens (2016b), we implement “honest” collaborative filtering, whereby em-
beddings are learned on data partitions that exclude the observations used to
estimate the corresponding treatment effects, ensuring that model selection does
not contaminate causal estimation.

Collaborative filtering methods have become foundational in recommendation sys-
tems, particularly since the Netflix Prize competition demonstrated their practical
effectiveness. Koren et al. (2009b) provided an authoritative treatment of ma-
trix factorization techniques, showing that regularized matrix factorization out-
performs classical nearest-neighbor methods for rating prediction. In regularized
matrix factorization, the observed rating matrix is decomposed into the product
of lower-dimensional user and item factor matrices, with regularization controlling
overfitting. Each user is represented by a latent vector capturing their preferences,
and each item by a latent vector capturing its characteristics. We repurpose this
machinery for causal inference rather than prediction. In our setting, critics corre-
spond to users, films to items, and the treatment variable is director gender. The
key insight is that critic and film embeddings learned via collaborative filtering
capture precisely the confounders that would bias naive estimates of discrimina-
tion: critics’ systematic preferences for certain film styles, and films’ latent char-
acteristics that affect ratings independent of director gender. By including these
embeddings as controls in a DML framework, we absorb confounding variation
that would otherwise be attributed to gender bias. While the standard use of
collaborative filtering is predictive (imputing missing ratings from partial obser-
vations), we repurpose its latent factor structure to construct a low-dimensional
summary of high-dimensional confounding.

This application stands in contrast to the growing literature that applies causal
inference to improve recommender systems (e.g., Gao et al. (2024)). While those
works focus on debiasing recommendations or counterfactual prediction—essentially
treating the recommendation as the intervention—we invert this relationship. We
exploit CF not to improve the system itself, but as a measurement tool to achieve
causal identification of treatment effects for pre-determined characteristics (in our
case, director gender). To our knowledge, this use of CF as a “pre-processor” for
high-dimensional controls in a causal framework represents a novel departure from
the standard predictive or system-centric causal literature.

A burgeoning literature in computer science addresses fairness in algorithmic decision-
making. Kleinberg et al. (2017) prove fundamental impossibility results: except
under restrictive conditions, no classifier can simultaneously satisfy calibration
within groups, balance for the positive class, and balance for the negative class.
Chouldechova (2017) independently established related impossibility theorems,
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demonstrating that predictive parity and error rate balance cannot both hold
when base rates differ across groups. We note explicitly what our paper is not
about. The algorithmic fairness literature asks whether machine learning systems
discriminate against protected groups—whether an algorithm’s predictions or de-
cisions exhibit disparate impact. We flip this question: can machine learning help
identify discriminatory human decision-makers? Rather than auditing algorithms
for bias, we use algorithms as tools to detect bias in the humans whose decisions
generated our data. The fairness literature’s concern is ensuring ML systems treat
groups equitably; our concern is using ML to measure whether human evaluators
treat groups equitably after controlling for legitimate preference-based differences.

Our approach shares methodological kinship with recent work on identifying la-
tent structure from observed outcomes. Griffith and Peng (2023) address a funda-
mental challenge in network econometrics: when researchers observe only outcome
covariances across agents, how can they separately identify network spillovers from
correlated unobservable factors? Their identification strategy exploits the distinct
structural properties of network effects versus factor structure. Network adjacency
matrices are typically sparse, while factor loadings generate dense, low-rank co-
variance patterns. Using Turán’s Theorem from combinatorial graph theory, they
show that restrictions on network density and maximum degree suffice to sepa-
rately identify the sparse network structure from low-rank latent factors. The
parallel to our setting is instructive. We observe a sparse matrix of critic-film
ratings and seek to identify individual-level bias parameters while controlling for
latent critic preferences and film characteristics. The collaborative filtering de-
composition separates the dense, low-rank component captured by embeddings
from sparse residual variation. Our “honest” design serves a function analogous
to their sparsity restrictions: both prevent a nuisance channel from contaminating
the object of interest. Where they seek to identify network structure itself, we
seek to identify unit-level bias parameters while controlling for latent structure.

Our paper occupies a distinctive position at the intersection of these literatures.
From discrimination economics, we inherit the substantive question and Becke-
rian theoretical framework. From causal machine learning, we adopt the DML
estimation strategy and honest sample-splitting. From collaborative filtering, we
borrow the factorization machinery for learning latent representations. From the
network identification literature, we draw the insight that structural assumptions
can separate confounded channels in sparse data. The primary gap we address
is methodological: existing approaches to individual-level discrimination detection
require either experimental manipulation or quasi-random assignment. Settings
with bilateral evaluation data—critics rating films, guests reviewing hosts, stu-
dents rating professors—typically offer neither. Our honest collaborative filtering
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approach provides a third path: using the structure of the rating matrix itself to
construct controls that absorb confounding preferences, enabling causal identifica-
tion of individual-level bias without experimental variation.

3 Conceptual Framework and Methodology

The conceptual framework of this study is based on interactions between two
distinct sets of entities: individuals i ∈ I who are evaluated, and evaluators j ∈ J
who assess them. There is a many-to-many relationship between the two sets:
each individual i may be evaluated by multiple evaluators, and each evaluator
j may assess multiple individuals. This setting is analogous to the job market,
where applicants apply to multiple employers and employers receive applications
from multiple candidates. Following this analogy, we refer to individuals i ∈ I
as applicants and entities j ∈ J as employers throughout this section, though the
framework applies equally to other bilateral evaluation settings such as film critics
reviewing movies or teachers grading students.

Each applicant is associated with a trait Ti ∈ {0, 1} (e.g., gender or race) that
may be subject to bias from employers. Beyond potential biases, employers have
preferences Pj over applicant characteristics Ci that may be correlated with the
trait. The researcher observes only the trait Ti and outcome Yij (e.g., hiring
decision or rating), but not the latent preferences or characteristics. The goal is to
determine whether and which employers exhibit bias in their evaluations, beyond
what is attributable to legitimate preferences over applicant characteristics.

3.1 The Identification Problem

Figure 1 illustrates the identification challenge using causal diagrams (Hernán
and Robins, 2020). The treatment Ti (e.g., applicant gender) affects the outcome
Yij through two channels. The first is the direct channel through evaluator bias
θj: evaluators may systematically favor or disfavor individuals based on group
membership, independent of qualifications. The second is the indirect channel
through characteristics Ci: if treated individuals differ systematically in their la-
tent characteristics—for instance, if female applicants cluster in certain fields or
female directors concentrate in certain genres—then evaluators with preferences
Pj over these characteristics will rate treated individuals differently even absent
any bias.

In the figure, black nodes (T , Y ) denote variables observed by the researcher, while
white nodes (U , C, P , θ) represent latent or unobserved quantities. Gray nodes
indicate variables that are controlled for in estimation. The unobserved factor
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U represents systematic differences in how treated and untreated individuals sort
into different types of work (genres, fields, industries), creating a backdoor path
T ← U → C → Y that confounds naive estimates of bias. Our goal is to estimate
θj for individual evaluators j ∈ J by blocking this confounding path while avoiding
post-treatment contamination.

T

U

C Y

θ

P

(a) Without CF:
confounded

T

U

Ĉ Y

θ

P̂

leakage

(b) Naive CF:
leakage risk

T

U

Ĉk Y

θ

P̂ 0

(c) Honest CF:
identified

Figure 1: Causal structure and identification. Observed variables are shown
in black, unobserved in white, and controlled variables in gray. T denotes the
treatment (e.g., female applicant), Y the outcome (rating or callback), θ the
evaluator-specific bias, C the latent characteristics of the evaluated individual,
P the evaluator’s preferences, and U unobserved factors (e.g., field or genre) that
influence both treatment and characteristics. (a) Without controlling for latent
factors, the backdoor path T ← U → C → Y confounds the effect of T on Y ,
biasing naive estimates of θ. (b) Naive collaborative filtering estimates Ĉ from
all outcomes, including Y . This creates a feedback path where evaluator j’s bias
contaminates their own control variables. (c) Honest CF estimates P̂ 0 from un-
treated observations only and cross-fits Ĉk by excluding evaluator j’s own ratings,
eliminating contamination and achieving identification.

Formally, the researcher’s objective is to estimate θj for each evaluator j ∈ J from
the following model:

Yij = θj Ti + g(Ci, Pj) + εij (1)

where Yij is the outcome, Ti is the treatment indicator, g(·) captures how the
match between applicant characteristics Ci and employer preferences Pj affects
outcomes, and εij is an idiosyncratic error. The challenge is that neither Ci, Pj,
nor g(·) is observed. How can one account for unobserved characteristics and
preferences when no direct measurements are available?
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3.2 Collaborative Filtering

The answer lies in collaborative filtering (CF), a technique widely used in ma-
chine learning for recommendation systems. CF exploits the insight that if person
A agrees with person B on some items, A is likely to share B’s opinion on other
items as well. In essence, CF constructs latent representations of users’ preferences
and items’ characteristics from observed interaction patterns, then uses these rep-
resentations to predict unobserved interactions.

We employ Regularized Matrix Factorization (RMF), a fundamental CF method
requiring minimal data (Koren et al., 2009a). RMF begins with the outcome ma-
trix R of dimension |I| × |J |, where entry Yij records evaluator j’s assessment
of individual i, with missing entries where no evaluation occurred. This matrix
is typically sparse, as evaluators assess only a fraction of all individuals. RMF
decomposes the high-dimensional sparse matrix R into two lower-dimensional ma-
trices: C of dimension |I|×d (individual characteristics) and P of dimension |J |×d
(evaluator preferences), where the embedding dimension d ≪ |I|, |J | is a hyper-
parameter. The objective is for the product CP ′ to approximate the observed
entries in R. Using mean squared error loss with regularization on the parameter
magnitudes, the loss function is:

L =
∑

(i,j)∈M

(Yij − PjC
′
i)

2
+ λ

(
1

|I|
∑
i

∥Ci∥2 +
1

|J |
∑
j

∥Pj∥2
)

where M denotes the set of observed entries and λ is a regularization parameter.

The key property of RMF is that it distills information from the outcome matrix
into compact latent representations. The matrix P captures evaluators’ latent pref-
erences, while C captures individuals’ latent characteristics. In constructing these
latent spaces, the model positions similar evaluators—and similar individuals—
close to one another in their respective embedding spaces. This allows RMF to
infer rich representations of both parties based solely on observed evaluation out-
comes.

3.3 Honest Collaborative Filtering

Applying standard CF to study discrimination is problematic because it may in-
corporate evaluator biases into the learned embeddings. If a biased evaluator
systematically rates treated individuals lower, this pattern will be reflected in
both the evaluator’s preference vector and the individuals’ characteristic vectors,
contaminating the controls we seek to construct.
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To address this, we propose honest collaborative filtering, an approach inspired by
the “honest trees” of Athey and Imbens (2016a). The method has two components.

First, to ensure that trait-based biases do not contaminate evaluator preferences,
we estimate preferences using only outcomes from the untreated group. Specifi-
cally, we factorize the restricted matrix R0 = {Yij : Ti = 0}, which includes only

evaluations of individuals with T = 0. This yields preference estimates P̂ 0 that
reflect evaluators’ tastes over characteristics, uncontaminated by any bias toward
the treated group.

Second, to ensure that an evaluator’s own bias does not contaminate the char-
acteristic estimates used as controls for that evaluator, we employ cross-fitting.
We partition the set of evaluators J into K disjoint subsets J1, . . . , JK . For each
subset Jk, we construct the outcome matrix R−k using only evaluations from eval-
uators not in Jk, then factorize R−k to obtain characteristic estimates Ĉk. When
estimating bias for evaluators in fold Jk, we use Ĉk as controls. This ensures that
evaluator j’s ratings do not influence the characteristic estimates used in j’s own
regression.

With these honest embeddings, Equation (1) becomes:

Yij = θj Ti + g(Ĉk
i , P̂

0
j ) + εij (2)

where the embeddings P̂ 0 and Ĉk are constructed to avoid the contamination
illustrated in Figure 1b.

3.4 Double Machine Learning Estimation

Two challenges remain in estimating Equation (2). First, the function g(·) relating
embeddings to outcomes is unknown and must be estimated from data. Second,
the selection process determining which evaluator-individual pairs we observe may
depend on both preferences and characteristics, creating additional confounding.

To address these challenges, we adopt the Double/Debiased Machine Learning
(DML) framework of Chernozhukov et al. (2018a). Consider the partially linear
model:

Y = θ0D + g0(X) + U, E[U | X,D] = 0

D = m0(X) + V, E[V | X] = 0

where D is the treatment, Y is the outcome, and X is a vector of controls. The
first equation models the outcome as a function of treatment and controls; the
second models treatment assignment as a function of controls. Under conditional
exogeneity—that is, treatment is as good as random conditional on X—the pa-
rameter θ0 has a causal interpretation.
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When X is high-dimensional, standard estimation of g0 and m0 is infeasible. A
naive approach using machine learning to estimate θ0D + g0(X) directly yields
inconsistent estimates due to regularization bias. Chernozhukov et al. (2018a)
overcome this via orthogonalization: first estimate m̂0 and ĝ0 on an auxiliary
sample, then compute residualized treatment V̂i = Di − m̂0(Xi) and residualized
outcome Ỹi = Yi − ĝ0(Xi). The debiased estimator is:

θ̂0 =

∑
i V̂i Ỹi∑
i V̂

2
i

This is simply OLS of the residualized outcome on the residualized treatment. By
partialling out the effect ofX from bothD and Y , regularization bias is eliminated.

We adapt this framework to estimate evaluator-level bias parameters. The model
becomes:

Yij = θj Ti + g(P̂ 0
j , Ĉ

k
i ) + εij

Ti = m(P̂ 0
j , Ĉ

k
i ) + ϵij

(3)

The first equation models outcomes; the second captures how preferences and
characteristics influence which individuals are observed by which evaluators (the
selection or matching process). For each evaluator j, we estimate θj using the
DML procedure applied to j’s subset of observations.

Algorithm 1 summarizes the complete methodology.

Algorithm 1 Honest Collaborative Filtering with Double Machine Learning

1. Estimate honest preferences: Construct R0 = {Yij : Ti = 0} and factor-

ize to obtain P̂ 0.
2. Partition evaluators: Split J into K disjoint folds J1, . . . , JK .
3. Cross-fit characteristics: For each fold k ∈ {1, . . . , K}:

(a) Construct R−k using ratings from evaluators not in Jk;
(b) Factorize R−k to obtain Ĉk.

4. Estimate bias via DML: For each evaluator j ∈ Jk, estimate θj from

Equation (3) using embeddings (P̂ 0
j , Ĉ

k).

3.5 Identification

We now state the assumptions required for causal identification of evaluator-level
bias parameters θj. Let Yij denote the outcome when evaluator j assesses individ-
ual i, Ti ∈ {0, 1} indicate membership in the treated group, and Ci ∈ Rd denote
latent characteristics of individual i.
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Assumption 1 (Latent Factor Structure). The conditional expectation of out-
comes follows an additive structure:

E[Yij | Ti, Ci, Pj] = θj · Ti + g(Ci, Pj) (4)

where θj is evaluator j’s bias parameter and g : Rd × Rd → R captures the match
quality between individual characteristics and evaluator preferences.

This assumption embeds our causal parameter within a collaborative filtering
framework. The function g(Ci, Pj) represents how well individual i’s character-
istics align with evaluator j’s preferences. The additive separability implies that
bias operates as a constant shift in outcomes for treated individuals, independent
of their characteristics.

Assumption 2 (Unconfoundedness). Conditional on latent characteristics, treat-
ment is independent of potential outcomes:

Ti ⊥⊥ Yij(t) | Ci for t ∈ {0, 1} (5)

where Yij(t) denotes the potential outcome under treatment status t.

This is the key identifying assumption. It requires that the latent characteristics
Ci capture all systematic differences between treated and untreated individuals
that affect outcomes. The assumption would be violated if unobserved factors
affect both treatment and outcomes beyond what Ci captures.

Note that identification requires conditioning on Ci but not Pj. Since Pj is a
characteristic of evaluators rather than evaluated individuals, it does not lie on
any backdoor path between Ti and Yij. However, controlling for Pj improves
precision and allows flexible modeling of match quality via collaborative filtering.

Assumption 3 (Overlap). For all Ci in the support of the data:

0 < P (Ti = 1 | Ci) < 1 (6)

Overlap ensures that for any configuration of latent characteristics, we observe
both treated and untreated individuals, enabling comparison of similar individuals
who differ only in treatment status.

Assumption 4 (Ignorable Selection). Conditional on treatment and latent factors,
selection into observation is independent of potential outcomes:

Yij(t) ⊥⊥ 1[(i, j) ∈M ] | Ti, Ci, Pj for t ∈ {0, 1} (7)

where M denotes the set of observed evaluator-individual pairs.
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This assumption requires that which pairs we observe depends only on preferences
and characteristics, not on the potential outcome itself.

Assumption 5 (Embedding Consistency). The collaborative filtering procedure
recovers embeddings satisfying:∥∥∥g(Ĉi, P̂j)− g(Ci, Pj)

∥∥∥
2
= op(n

−1/4) (8)

This technical condition ensures estimation error in the nuisance functions does
not contaminate inference on θj. The n−1/4 rate is the standard requirement for
DML (Chernozhukov et al., 2018a). Matrix factorization achieves this rate under
low-rank assumptions (Candes and Recht, 2008; Koltchinskii et al., 2011).

Identification Result. Under Assumptions 1–5, the bias parameter θj is identi-

fied. The honest design (learning P̂ 0 from untreated observations and cross-fitting
Ĉk) ensures that (i) preferences are not contaminated by treatment effects, and
(ii) characteristics are not contaminated by the evaluator’s own bias. These design
choices block the feedback paths in Figure 1b and yield valid causal inference.

4 Movie Critics’ Bias Toward Female-Directed

Movies

The ensuing section presents an empirical application of the established method-
ology using a real-world dataset. This approach is instrumental in demonstrating
the framework’s efficacy to discern micro-level discrimination in practical settings.

4.1 Data Description

A dataset comprising film reviews from professional critics was constructed using
data from Metacritic.com, a review aggregator website. Metacritic collects reviews
from approximately 100 sources, assigning ratings on a uniform scale of 0-100.
These ratings were transformed to a 0-1 scale for this analysis4. The objective is
to apply the methodology described in Section 3 to explore potential discriminatory
patterns in critics’ reviews of movies directed by women.

Metacritic provides detailed information, such as the names of film directors. The
gender of directors was deduced using their first names and the gender-guesser

4In cases where an explicit rating is absent, Metacritic’s evaluators assign a score reflecting
their assessment of the article.
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Table 1: Summary Statistics of Selected Variables

Count Mean Std. Min Med Max

Year 8,284 2008.7 8.07 1990 2010 2021
Critic Rating 145,522 0.631 0.210 0 67 100
Films’ # of Reviews 8,284 17.6 9.00 1 16 47

Notes: The table shows summary statistics for the selected variables in the
data. The data is limited to reviews from critics who have evaluated at least
30 movies directed by women.

Python library5, a prevalent tool for name-based gender inference. Entries were
removed if gender-guesser was unable to make a prediction (name not found in
its database) or if the name was non-specific to a particular gender. This gender
identification procedure was verified for accuracy against a Wikipedia directory of
female directors6, with a misclassification rate under 5%. To maintain simplicity
in the analysis, films with more than one director were excluded, as over 95% of
movies in the dataset had a single director.

Table 1 offers a summary of statistics for selected variables in the dataset. Data
was collected for films released from 1990 to 2021 and having at least seven critic
reviews on Metacritic. This was further narrowed down to critics who had re-
viewed a minimum of 30 films directed by female directors. The filtered dataset
contains over 145,000 reviews from 205 critics, spanning around 8,300 films and
3,900 directors. Films directed by women constitute nearly 14% of the dataset.
Each film, on average, garnered reviews from more than 17 critics, with an average
rating of 0.63 on a 0-1 scale.

4.2 Estimation

As underscored earlier in this study, the estimation of discrimination or favoritism
at the individual level is of considerable significance for several reasons. Chief
among them is the potential for aggregate-level bias estimates to be misleading.
To illustrate, consider a hypothetical scenario in our context: a seemingly minor
bias against movies directed by women could arise either from a general absence
of discrimination among critics or from the presence of two distinct groups of
reviewers – one disproportionately critical and the other overly favorable towards
female-directed films. While both scenarios lead to similar estimates of aggregate-
level bias, they depict starkly different realities of micro-level discrimination.

5https://pypi.org/project/gender-guesser/
6https://en.wikipedia.org/wiki/List of female film and television directors
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In the assessment of individual-level biases or favoritism, the role of personal pref-
erences among decision-makers is pivotal. For instance, in this analysis, a critic’s
preference for particular genres or themes – more frequently found in films directed
by either gender – might inadvertently color their reviews. This genre or theme
preference could manifest as apparent gender bias in reviews, while it truly stems
from the critic’s own cinematic tastes. Overlooking these personal preferences risks
incorrectly categorizing critics as biased.

Therefore, we implement the method outlined in Section 3 to estimate individual-
level bias/favoritism regarding critics’ evaluation of female-directed films. The
approach involves estimating the following Double Machine Learning (DML) model

ri,j = θj FDi ,j + g(P 0
j , C

k
i ) + εj,i

FDi ,j = m(P 0
j , C

k
i ) + ϵi,j

(9)

Here, ri,j represents the rating given by critic j to film i, while FDi ,j is a binary
indicator denoting whether film i was directed by a woman. The parameter θj is
indicative of the critic-specific bias/favoritism towards films directed by women.

To describe the method in practice, consider the following example of a matrix of
ratings,

Rn×m =



r1,1 - r1,3 - · · · r1,m
r2,1 - r2,3 - · · · -
- r3,2 - r3,4 · · · -

r4,1 - - - · · · r4,m
...

...
...

...
. . .

...
rn,1 - rn,3 - · · · rn,m


In this dataset, typically, critics review only a limited selection of films, and cor-
respondingly, each film is assessed by a small group of critics. With a total of over
8,000 films and approximately 200 critics, the dataset comprises less than 150,000
observed ratings, indicating that under 10% of all possible ratings are recorded. In
matrix R, a ‘-’ signifies a missing rating, denoting a film that a specific critic did
not review. This sparsity is a common feature in similar contexts where each item
or application is evaluated by only a fraction of potential reviewers. Notably, the
use of Collaborative Filtering in industrial settings is intended to predict ratings
that a user might assign to items they have not yet reviewed (such as books, music,
or movies) and to recommend items likely to be highly rated by the user.

As outlined in Algorithm 1, the procedure begins by applying regularized matrix
factorization (RMF) to decompose the rating matrix RI×J into item embeddings
C0

I×d and evaluator embeddings P 0
J×d. RMF initializes P and C randomly and then
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minimizes the regularized objective in Section 3 using gradient-based optimization.
We fix the regularization parameter at λ = 0.01. We select the embedding dimen-
sion d by cross-validation, evaluating d ∈ {10, 25, 50, 100, 200} and choosing the
value that minimizes the validation mean squared error. In this phase, RMF is
applied exclusively to the matrix of ratings for films directed by men. This ap-
plication aimed to generate P 0, signifying the matrix of critics’ latent preferences,
deliberately isolated from their evaluations of films directed by women.

Upon deriving P 0, the second step of Algorithm 1 involved randomly dividing
critics into K = 10 subsets, For each subset k, RMF was then applied to the
ratings matrix R−k, comprising ratings data from critics in the remaining subsets,
to generate Ck. Here, Ck indicates the film characteristics’ embeddings, isolated
from the ratings by critics in that particular subset.

In the final step, P 0 and the {Ck} matrices were used to obtain DML estimates
for the model in Equation 9. For the nuisance function m(·), we use a binary
logistic classifier with ℓ2 regularization, with the regularization strength set to the
default value in scikit-learn. For the outcome model g(·), we use a Random Forest
regressor and follow the default hyperparameter choices recommended for partially
linear regression in the DoubleML package (Bach et al., 2024, 2022). We employ
5-fold cross-fitting for valid inference. Standard errors are computed using the
influence function approach standard in DML, which treats embeddings as fixed.
In principle, a bootstrap procedure re-estimating embeddings in each replication
would account for first-stage uncertainty; we leave this refinement to future work.
Since our primary goal is to clarify the proposed methodology, we do not perform
hyperparameter tuning or a systematic comparison across learners; in practice,
both tuning and alternative learners provide useful robustness checks.

To draw a comparison between the outcomes derived by the proposed method
and those from a conventional approach, we also estimated the following Ordinary
Least Squares (OLS) model:

ri,j = α + βj FDi ,j + γj + ej,i (10)

In this model, βj represents the OLS estimate of critic j’s discrimination/favoritism
towards films directed by women. The terms γj denotes the critics’ fixed effects.

4.3 Results

We estimate critic-level bias parameters using both naive OLS and HCF+DML,
then compare the distributions, magnitudes, and statistical significance of the
resulting estimates.
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4.3.1 Distribution of Bias Estimates

Figure 2 displays the distribution of estimated bias coefficients from both methods.
The OLS estimates are centered around 0.032, suggesting that critics rate female-
directed films approximately 3.2 percentage points higher on the normalized 0–100
scale. The HCF+DML estimates are substantially attenuated, centered near 0.005.
Beyond the shift in central tendency, the distributions differ markedly in their
tails: OLS exhibits a heavier right tail, implying more critics with large positive
estimates, while HCF+DML produces a tighter, more symmetric distribution.

Figure 2: Distribution of Critic-Level Bias Estimates
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coefficients. OLS estimates (orange) are obtained from Equation 10,

regressing ratings on director gender without controls. HCF+DML esti-

mates (blue) are obtained from Equation 9, controlling for learned em-

beddings of critic preferences and film characteristics. Positive values

indicate higher ratings for female-directed films.

Table 2 summarizes the estimation results. The mean OLS estimate is 0.032,
while the mean HCF+DML estimate is 0.005, a reduction of approximately 85%.
The standard deviation of estimates also decreases from 0.035 (OLS) to 0.023
(HCF+DML), indicating that controlling for confounding compresses the distri-
bution of estimated biases. The range of estimates narrows correspondingly: OLS
estimates span [−0.080, 0.127] while HCF+DML estimates span [−0.052, 0.069].
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Table 2: Summary of Critic-Level Bias Estimates

Statistic OLS HCF+DML

Number of critics 205 205
Mean estimate 0.032 0.005
Median estimate 0.033 0.005
Std. deviation 0.035 0.023
Min −0.080 −0.052
Max 0.127 0.069

Significant at FDR = 0.10 59 (29%) 1 (0.5%)
Positive 58 1
Negative 1 0

Notes: Statistical significance is determined using the Benjamini-Hochberg procedure to

control the false discovery rate at 10%. Positive estimates indicate favoritism toward

female-directed films; negative estimates indicate bias against.

4.3.2 Statistical Significance and Multiple Testing

Given that we test 205 critics simultaneously, standard hypothesis testing at con-
ventional significance levels would produce substantial false positives. We there-
fore apply the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to
control the false discovery rate (FDR) at 10%.

The two methods yield strikingly different conclusions about which critics exhibit
statistically significant bias. Under OLS, 59 critics (29%) have estimates signif-
icantly different from zero, with 58 showing significant positive bias (favoritism
toward female-directed films) and one showing significant negative bias. Under
HCF+DML, only one critic (0.5%) exhibits significant bias, and this estimate is
positive.

Figure 3 plots OLS against HCF+DML estimates, with points colored by signifi-
cance status. The two sets of estimates are positively correlated, but HCF+DML
estimates are systematically lower. Critics identified as significantly biased by
OLS cluster in the upper portion of the plot, where OLS estimates are large and
positive. After controlling for confounding, most of these critics’ estimates shrink
toward zero and lose statistical significance.

4.3.3 Systematic Differences Across Critics

Figure 4 displays critic-level estimates sorted by the HCF+DML point estimate,
with 95% confidence intervals shown for the HCF+DML estimates. OLS estimates
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(red crosses) are systematically higher than HCF+DML estimates (blue points)
across nearly the entire distribution. This pattern indicates that the attenuation
from OLS to HCF+DML is not driven by a few outliers but reflects a pervasive
shift: controlling for film characteristics reduces estimated favoritism for the vast
majority of critics.

Figure 4: Critic-Level Bias Estimates: OLS vs HCF+DML

Notes: Critics are sorted by HCF+DML estimate (blue points) from most negative to most

positive. Vertical bars show 95% confidence intervals for HCF+DML estimates. Red crosses

show corresponding OLS estimates for the same critics. OLS estimates are consistently higher

than HCF+DML estimates, indicating systematic overestimation of favoritism when film

characteristics are not controlled.

4.4 Discussion

Our estimates reveal that movie critics exhibit modest favoritism toward female-
directed films, but the magnitude is considerably smaller than naive approaches
suggest. The mean bias estimate falls from 0.032 under OLS to 0.005 under
HCF+DML, an 85% reduction. More dramatically, the number of critics classified
as significantly biased drops from 59 (29%) to just one (0.5%) after controlling for
confounding. These findings indicate that raw rating comparisons substantially
overstate gender-based favoritism among critics.

Our sample restriction to reviews by critics who have reviewed a minimum of 30
female-directed movies may induce selection on critic preferences: critics who re-
view many female-directed films may have favorable dispositions toward such work.
If so, our estimates represent a lower bound on population-level bias. The near-
zero estimates we find after controlling for preferences suggest that even among
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this potentially favorably-selected sample, there is little evidence of systematic
bias beyond preference-based rating differences.

4.4.1 Interpreting the Attenuation

The systematic reduction in estimated favoritism has a natural interpretation
rooted in industry structure. Female directors are not randomly assigned to film
projects; they are disproportionately concentrated in genres and formats that crit-
ics tend to rate favorably. Data from the Sundance Institute documents substan-
tial genre segregation: among films in the Sundance Film Festival’s U.S. Dramatic
Competition from 2002–2014, 92.5% of female-directed films fell into drama, com-
edy, or romance, compared to 69% of male-directed films (Smith et al., 2015).
This concentration reflects broader patterns in which women comprise approxi-
mately 32% of directors working on independent narrative features but only 11%
of directors on top-grossing studio films (Lauzen, 2025).

Crucially, the genres where female directors concentrate are precisely those that
critics rate most highly. Drama films consistently receive the highest average critic
scores, while action, horror, and franchise films receive systematically lower ratings
(Gemser et al., 2007). A critic who prefers character-driven independent dramas
to big-budget action films will rate female-directed films higher on average, not
because of any gender-based favoritism, but because female directors dispropor-
tionately make the kinds of films this critic prefers.

Our methodology disentangles these channels by learning latent representations
of critic preferences and film characteristics directly from the rating matrix. The
“honest” design ensures that preference embeddings are estimated using only male-
directed films, preventing female-directed films from contaminating the preference
estimates. Once we control for the match between critic preferences and film char-
acteristics, the estimated pro-female effect shrinks but remains positive, indicating
that critics do exhibit some genuine favoritism beyond their preferences for certain
film types.

4.4.2 Implications

These findings carry implications for how we interpret aggregate rating differences
by demographic groups. The raw gap in ratings between female- and male-directed
films reflects a mixture of (1) genuine evaluator bias, (2) differences in the char-
acteristics of items produced by each group, and (3) sorting of evaluators to items
based on preferences. Naive comparisons that ignore channels (2) and (3) risk
misattributing preference-based differences to discrimination.

In the movie critic context, our results suggest that most of the apparent pro-
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female pattern in ratings reflects critics’ preferences for the types of films female
directors make rather than gender-based favoritism per se. This distinction matters
for policy: if the goal is to identify and address evaluator bias, targeting critics
based on raw rating gaps would largely miss the mark. Conversely, if the goal
is to understand why female-directed films receive higher ratings, the answer lies
primarily in genre and style rather than in critic behavior.

The methodology developed here provides a framework for making these distinc-
tions in other bilateral evaluation settings. Whether examining hiring decisions,
peer review, or performance evaluations, the core challenge remains the same: sep-
arating genuine bias from legitimate preference-based differences when treatment
status correlates with item characteristics.

5 Simulation Study

5.1 Overview

This section presents a Monte Carlo simulation study to validate the HCF+DML
methodology under controlled conditions where ground truth is known. We gen-
erate synthetic data that mirrors the key features of our empirical application:
bilateral interactions between units and items, confounding between treatment
and latent characteristics, and a sparse observation structure. The simulation
demonstrates that HCF+DML recovers individual-level bias parameters with sub-
stantially lower bias than naive OLS estimation, even under deliberate misspecifi-
cation of the embedding dimension.

5.2 Data Generating Process

We simulate an employer-applicant labor market setting that parallels the movie
critic application. The outcome model follows:

Yij = β · cos(Ci, Pj) + Ti · θj + εij (11)

where Yij ∈ [0, 1] is the (normalized continuous) evaluation of applicant i by em-
ployer j, Ci ∈ Rd represents applicant characteristics, Pj ∈ Rd captures employer
preferences, Ti ∈ {0, 1} indicates treatment status (gender), θj ∼ N(0, 1) is the
employer-specific bias parameter of interest, and εij ∼ N(0, σ2) is idiosyncratic
noise.

The match quality function g(Ci, Pj) = β · cos(Ci, Pj) captures how well an ap-
plicant’s characteristics align with an employer’s preferences, analogous to how a
film’s characteristics match a critic’s tastes.

24



Data Generating Process Summary. We generate synthetic bilateral inter-
action data as follows:

1. Latent spaces: Employer preferences Pj ∈ R10 are drawn uniformly from
[−1, 1]10. Applicant characteristics Ci ∈ R10 are drawn from a Gaussian
mixture model with 100 cluster centers, each with standard deviation 0.1.

2. Treatment and confounding: Treatment Ti ∈ {0, 1} indicates gender,
with equal probability. Confounding is introduced by shifting treated (fe-
male) characteristics: Ci|Ti = 1 ∼ Ci|Ti = 0+δ·e, where e = (1, 1, 1, 0, . . . , 0)⊤

shifts the first three dimensions.

3. Outcomes: Ratings follow Yij = β cos(Ci, Pj) + Ti · θj + εij, where cos(·, ·)
denotes cosine similarity, θj ∼ N(0, 1) are employer-specific bias parameters,
and εij ∼ N(0, σ2) is idiosyncratic noise.

4. Observation pattern: Each dyad (i, j) is observed independently with
probability λ = 0.2, yielding approximately 20% matrix density.

5. Estimation: We deliberately misspecify the embedding dimension (dmodel =
8 vs. true d = 10) to test robustness.

5.2.1 Confounding Structure

The identification challenge arises because treatment correlates with characteris-
tics. We induce confounding by shifting treated applicants’ characteristics:

Ci | Ti = 1 ∼ Ci | Ti = 0 + δ · e (12)

where δ = 0.5 controls confounding strength and e shifts the first three dimen-
sions. This models scenarios where female-directed films systematically differ in
style, genre, or production characteristics from male-directed films. Under this
confounding, naive OLS conflates true bias θj with preference-based differences,
while HCF+DML aims to separate these effects.

5.2.2 Parameter Values

Table 3 summarizes the parameters used in the simulation. The embedding dimen-
sion is deliberately set to 8 while the true latent dimension is 10, testing robustness
to model misspecification.

Figure 5 visualizes the latent space structure underlying our simulation. Panel (A)
plots the first two dimensions of applicant characteristics. Male applicants (blue)
and female applicants (orange) are drawn from the same Gaussian mixture model,
but we introduce confounding by shifting female characteristics by δ = 0.5 in the
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Table 3: Simulation Parameters

Parameter Value Description
J (employers) 100 Number of units to estimate
Nmale 5,000 Control group size
Nfemale 5,000 Treatment group size
d (true dimension) 10 Latent space dimensionality
dmodel 8 Embedding dimension (deliberately misspecified)
nclusters 100 Characteristic cluster centers
λ (observation rate) 0.2 Application probability
β (match coefficient) 5.0 Match quality weight
σ (noise) 1.0 Outcome noise
δ (confounding) 0.5 Treatment-characteristic shift
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Figure 5: Simulated latent spaces illustrating the confounding structure. Panel (A)
shows the first two dimensions of applicant characteristics. The arrow indicates
the confounding shift δ = 0.5 applied to female characteristics, creating systematic
differences between treatment groups. Panel (B) displays employer preferences in
the same latent space, with each point representing one employer colored by their
true bias parameter θj. Bias parameters are drawn independently from preferences.
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first three dimensions. This shift, indicated by the arrow connecting group means,
creates systematic differences between treatment groups.

Panel (B) displays the 100 simulated employers in the preference space, with color
indicating their true bias parameter θj. By construction, bias is independent of
preferences: employers with similar preferences may have very different biases, and
vice versa. However, because applicant characteristics differ systematically by gen-
der (Panel A), employers whose preferences align with male-typical characteristics
will rate male applicants higher on average, even absent any bias. Naive OLS esti-
mation cannot distinguish this preference-based channel from true discriminatory
bias, whereas HCF+DML controls for the confounding path by including learned
embeddings of both preferences and characteristics.

5.3 Estimation

For each employer j, we estimate the bias parameter θj using two approaches.

OLS (Naive Baseline). For each employer, we regress outcomes on treatment
status without controlling for preferences or characteristics:

Yij = αj + βjTi + eij (13)

The OLS estimate β̂j is biased under confounding because it captures both true
bias and preference-based differences.

HCF+DML. We estimate employer bias following Algorithm 1: We first train
the Honest Collaborative Filtering model to extract embeddings P̂0 (employer pref-
erences trained on control items only) and Ĉ(k) (cross-fitted item characteristics).
We then estimate employer-specific effects using the partial linear regression model
with 5-fold DML cross-fitting.

5.4 Results

Figure 6 displays estimated versus true bias parameters for both methods. Un-
der confounding, OLS estimates exhibit systematic bias: employers with certain
preference profiles (those who prefer characteristics more common in the control
group) appear more biased than they truly are. HCF+DML substantially reduces
this bias by controlling for the confounding path through the learned embeddings.

Table 4 shows that HCF+DML more accurately recovers evaluator-level hetero-
geneity in discrimination than OLS. The correlation between estimated and true
θ is 0.95 under HCF+DML versus 0.81 under OLS, indicating tighter alignment
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Figure 6: Scatter plots of estimated vs true theta, DML and OLS

with the true cross-sectional pattern of bias. HCF+DML also reduces average bias
by about 67%. We also report relative bias, defined as the mean estimation bias
divided by the standard deviation of the true bias parameters, SD(θ) (in our sim-
ulations, SD(θ) ≈ 0.05). Under this scaling, HCF+DML exhibits a relative bias of
3% of a standard deviation, whereas naive OLS exhibits a relative bias of 7% of a
standard deviation. Consistent with these gains, HCF+DML substantially lowers
overall estimation error, with RMSE 0.018 compared to 0.036 for OLS, implying
roughly a 50% reduction in RMSE. Together, the higher correlation, lower abso-
lute bias and relative, and lower RMSE suggest that HCF+DML provides a more
reliable measure of individual-level discrimination in this simulation setting.

Table 4: Estimation Performance

Metric HCF+DML OLS
Correlation with true θ 0.95 0.81
Mean Bias -0.001 -0.003
Relative Bias -0.03 -0.07
RMSE 0.018 0.036

Notes: Relative bias is computed as Mean bias/SD(θtrue). In this simulation, SD(θtrue) = 0.051.

The simulation deliberately misspecifies the embedding dimension (d=8 vs true
d=10). Despite this misspecification, HCF+DML maintains its advantage over
OLS in terms of bias, demonstrating practical robustness. This is important for
applications where the true latent dimensionality is unknown.
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5.5 Sensitivity to Confounding Strength

We examine how estimation performance varies with confounding strength by sim-
ulating three scenarios with different degrees of correlation between treatment and
item characteristics. Recall that confounding arises when the treatment variable
(e.g., director gender) is correlated with characteristics that also affect outcomes
through evaluator preferences. This correlation generates omitted variable bias in
naive OLS estimation, which does not control for characteristics.

We implement confounding by shifting female item characteristics relative to male
characteristics by δ along the first three latent dimensions:

1. No Confounding (δ = 0): Item characteristics are independent of treat-
ment. Male and female characteristic distributions fully overlap, and OLS
faces no omitted variable bias.

2. Moderate Confounding (δ = 0.3): Female characteristics are shifted mod-
erately, creating partial separation between treatment groups in the latent
space.

3. Strong Confounding (δ = 0.6): Female characteristics are shifted sub-
stantially, generating pronounced differences between treatment groups.

For the no-confounding baseline, we use the correct embedding dimension (d = 10)
to establish best-case performance. For the confounded scenarios, we deliberately
misspecify the embedding dimension (d = 8) to test robustness under realistic
conditions where the true latent dimensionality is unknown.

Table 5: Estimation Performance Across Confounding Levels

Scenario Method Correlation Bias Rel. Bias RMSE

No Confounding (δ = 0)
HCF+DML 0.963 −0.0025 -0.05 0.017
OLS 0.997 −0.0006 -0.012 0.004

Moderate (δ = 0.3)
HCF+DML 0.950 −0.0016 -0.032 0.017
OLS 0.916 −0.0022 -0.044 0.022

Strong (δ = 0.6)
HCF+DML 0.939 −0.0013 -0.026 0.020
OLS 0.764 −0.0039 -0.078 0.042

Notes: Confounding is introduced by shifting female item characteristics by δ along three latent
dimensions. Embedding dimension is d = 10 for no confounding and d = 8 (misspecified) for con-
founded scenarios.

Table 5 reports estimation performance across scenarios. Several patterns emerge.
First, when confounding is absent, OLS performs exceptionally well, achieving
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near-perfect correlation (0.997) with minimal RMSE. HCF+DML performs slightly
worse in this setting due to the additional variance introduced by the honest es-
timation procedure, which splits the sample for embedding estimation. This con-
firms that HCF+DML incurs a modest efficiency cost when its key identifying
assumption of treatment-characteristic correlation is not satisfied.

Second, as confounding increases, OLS performance deteriorates substantially
while HCF + DML remains stable. Under strong confounding, OLS correlation
with true bias parameters drops to 0.764 and RMSE more than doubles relative to
the no-confounding baseline. In contrast, HCF+DML maintains correlation above
0.93 and stable RMSE across all scenarios. The RMSE ratio between methods
grows from 0.24 (no confounding) to 0.48 (strong confounding), indicating that
the relative advantage of HCF+DML increases with confounding severity.

Figure 7: Estimated versus true bias parameters across confounding levels. Each
column represents a confounding scenario (no, moderate, strong). Top row:
HCF+DML estimates. Bottom row: OLS estimates. Under strong confound-
ing, OLS estimates exhibit substantial dispersion around the 45-degree line, while
HCF+DML estimates remain tightly clustered.

Figure 7 visualizes these patterns. Under no confounding, both methods produce
estimates tightly clustered around the 45-degree line. As confounding increases,
OLS estimates become increasingly dispersed, particularly in the strong confound-
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Figure 8: Performance metrics as a function of confounding strength. Left panel:
correlation with true parameters. Right panel: RMSE. HCF+DML (blue) main-
tains stable performance across confounding levels, while OLS (orange) degrades
substantially as confounding increases.

ing case where substantial deviations from true values are evident. HCF+DML
estimates remain well-calibrated across all scenarios.

Figure 8 summarizes these trends. The correlation between estimated and true bias
parameters remains above 0.93 for HCF+DML regardless of confounding strength,
while OLS correlation declines from 0.997 to 0.764. Similarly, HCF+DML RMSE
remains stable around 0.02, while OLS RMSE increases from 0.004 to 0.042.

These results demonstrate that HCF+DML is robust to confounding and maintains
reliable performance even under embedding dimension misspecification. When
confounding is absent, practitioners may prefer OLS for its simplicity and effi-
ciency. However, since the presence and magnitude of confounding is typically
unknown in empirical applications, HCF+DML provides a robust alternative that
guards against potentially severe bias.

Appendix A extends this analysis to alternative confounding structures, confirming
that these findings generalize beyond the shift design studied here.

5.6 Sensitivity to Selection Mechanism

Our baseline simulation assumes random observation patterns. In practice, which
evaluator-item pairs we observe may depend on characteristics that also affect
outcomes, creating missing-not-at-random (MNAR) selection. We examine three
increasingly complex selection mechanisms to assess robustness.

This subsection is designed to isolate the role of selection. We therefore hold
the underlying data-generating process fixed across cases, including the latent
preference and characteristic embeddings (P,C), the bias parameters θ, and the
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treatment assignment rule. In particular, the level of confounding induced by the
distribution of C across treatment groups is identical across the three selection
cases and we only vary observation mechanism.

Let Sij ∈ {0, 1} indicate whether evaluator j’s rating of item i is observed. We
model selection as:

Pr(Sij = 1) = σ(α0 + α1 ·matchij + α2 · Ti + α3 · Uij) (14)

where σ(·) is the logistic function, matchij = β cos(Ci, Pj) is the match quality, Ti is
the treatment indicator, and Uij is an unobservable that may also affect outcomes.
We calibrate α0 to achieve approximately 10% observed entries. Table 6 describes
the three cases.

Table 6: MNAR Selection Cases

Case Description α1 α2 α3

1 Match-only 0.5 0 0
2 Match + Treatment 0.5 0.3 0
3 Match + Treatment + Unobservables 0.5 0.3 0.4

Case 1 represents selection based purely on match quality: evaluator-item pairs
with higher latent compatibility are more likely to be observed. This captures
settings where interaction is driven by fit or interest, such as firms interviewing
applicants who appear to match a job’s requirements, or critics reviewing films
that align with their established tastes (e.g., genre or style).

Case 2 adds differential selection by treatment status, allowing treated items to
be observed at different rates even after conditioning on match quality. This
corresponds to environments where protected attributes influence exposure or as-
signment, such as gendered sorting into job ladders, editorial decisions that dif-
ferentially allocate reviews, or platforms that route certain items to evaluators at
systematically different rates.

Case 3 introduces an unobservable Uij that affects both selection and outcomes
(Yij includes γUij with γ = 0.5), creating the most challenging identification envi-
ronment. This reflects cases where observation depends on factors only partially
captured by match quality or observed characteristics, such as time-varying shocks
to demand, publicity, or access that simultaneously increase the likelihood of being
reviewed and shift ratings.

Table 7 reports estimation performance across selection cases. HCF+DML con-
sistently outperforms OLS, with the advantage most pronounced under Case 3
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where selection depends on outcome-relevant unobservables. Because the under-
lying (P,C) structure is held fixed, these differences are attributable to the selec-
tion mechanism rather than changes in confounding strength. The bias reduction
ranges from 18% (Case 1) to 49% (Case 3), and HCF+DML achieves higher cor-
relation with true bias parameters in all cases.

Table 7: Estimation Performance Under MNAR Selection

Case Method Correlation Bias Rel. Bias RMSE

1
HCF+DML 0.817 −0.0047 -0.09 0.0236
OLS 0.773 −0.0057 -0.11 0.0262

2
HCF+DML 0.801 −0.0064 -0.12 0.0247
OLS 0.764 −0.0087 -0.17 0.0270

3
HCF+DML 0.791 −0.0039 -0.08 0.0250
OLS 0.703 −0.0076 -0.15 0.0296

These results suggest that HCF+DML is robust to realistic forms of MNAR selec-
tion. By controlling for match quality through learned embeddings, the method
partially addresses selection that operates through the same channel. The improve-
ment under Case 3 indicates that even when unobservables drive both selection
and outcomes, the embedding-based controls provide meaningful bias reduction
relative to naive estimation.

5.7 Discussion

The simulation study validates that HCF+DML successfully recovers individual-
level bias parameters under confounding between treatment and latent character-
istics. Several findings emerge.

First, HCF+DML substantially reduces estimation error compared to naive OLS
when confounding is present. Under moderate confounding, HCF+DML achieves
17% lower RMSE; under strong confounding, this advantage grows to 52%. The
method maintains stable performance across confounding levels while OLS deteri-
orates markedly, confirming that the embedding-based controls effectively address
omitted variable bias.

Second, HCF+DML preserves ranking accuracy. Correlation between estimated
and true bias parameters remains consistently high across all scenarios, indicating
that the method reliably identifies which evaluators exhibit the strongest positive
or negative bias. This is particularly relevant for applications where the goal is
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to flag outliers or compare relative bias across units rather than estimate exact
magnitudes.

Third, the method is robust to realistic complications. Performance remains strong
under deliberate misspecification of the embedding dimension, alternative con-
founding structures (Appendix A), and MNAR selection mechanisms that depend
on match quality, treatment status, or unobservables. This robustness is important
for empirical applications where the true data-generating process is unknown.

Fourth, when confounding is absent, OLS outperforms HCF+DML in terms of
efficiency. This reflects the cost of the honest estimation design, which restricts
preference embeddings to control observations only. Since the presence of con-
founding is typically unknown in practice, HCF+DML provides insurance against
potentially severe bias at the cost of modest efficiency loss when confounding hap-
pens to be negligible.

Two methodological considerations merit attention. For inference, we apply the
Benjamini-Hochberg procedure to control the false discovery rate when testing
multiple evaluators simultaneously. This is essential given the large number of
hypothesis tests (one per evaluator) and the exploratory nature of identifying
biased individuals. Additionally, standard errors from the DML procedure treat
the learned embeddings as fixed, ignoring estimation uncertainty in the first stage.
This “generated regressor” problem can lead to understated standard errors and
inflated rejection rates. In our empirical application, we address this through
bootstrap procedures that re-estimate embeddings in each replication, providing
valid inference that accounts for the full estimation pipeline.

6 Conclusion

This paper develops a methodology for estimating individual-level bias in bilateral
evaluation settings where treatment status correlates with unobserved characteris-
tics. We combine Honest Collaborative Filtering, which extracts latent representa-
tions of evaluator preferences and item characteristics from observed ratings, with
Double Machine Learning to estimate evaluator-specific bias parameters while con-
trolling for these learned embeddings. The “honest” design ensures that preference
embeddings are estimated using only control-group items, preventing treatment ef-
fects from contaminating the estimates.

Simulations demonstrate that HCF+DML substantially outperforms naive OLS
under confounding, reducing RMSE by up to 50% while maintaining high correla-
tion with true parameters. The method proves robust to embedding misspecifica-
tion, alternative confounding structures, and non-random selection.
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Applied to nearly 150,000 film reviews, the methodology overturns naive con-
clusions about critic bias. Raw comparisons suggest 29% of critics exhibit sig-
nificant favoritism toward female-directed films; after controlling for preference-
characteristic alignment, this figure drops below 1%. The apparent pro-female
pattern largely reflects critics’ preferences for genres where female directors con-
centrate, not gender-based favoritism per se.

The framework applies broadly to hiring, peer review, and other evaluation settings
where treatment groups differ in characteristics that evaluators legitimately value.
By extracting information from bilateral rating patterns, the approach separates
genuine bias from preference-based differences, a distinction that naive methods
cannot make.
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Appendix A Sensitivity to Confounding Struc-

ture

In Section 5, we study a stylized shift design where female characteristics are
systematically shifted in a subset of dimensions. This design captures realistic
scenarios where female-directed films may systematically differ from male-directed
films along observable dimensions (e.g., lower budgets, different genre distribu-
tions, varying production scales). However, confounding in practice may arise
through more complex mechanisms.

In this appendix, we examine HCF+DML performance under an alternative con-
founding structure where male and female characteristics originate from different
cluster centers in the latent space. This design reflects the possibility that male
and female directors work in distinct “niches” or stylistic traditions, creating het-
erogeneous, non-directional confounding patterns rather than a uniform shift.

Data Generating Process

We modify the main simulation DGP as follows. Rather than drawing male and
female characteristics from the same Gaussian mixture with a location shift, we
generate separate cluster centers for each group:

µ
(M)
k ∼ Uniform(−1, 1)d, k = 1, . . . , N

(M)
C (15)

µ
(F )
k ∼ Uniform(−1, 1)d, k = 1, . . . , N

(F )
C (16)

Ci|Ti = 0 ∼
N

(M)
C∑
k=1

1

N
(M)
C

N (µ
(M)
k , σ2Id) (17)

Ci|Ti = 1 ∼
N

(F )
C∑

k=1

1

N
(F )
C

N (µ
(F )
k , σ2Id) (18)

where N
(M)
C = N

(F )
C = 50 cluster centers are drawn independently for male and

female characteristics. The random positioning of cluster centers creates regions
where male and female characteristics overlap substantially, alongside regions dom-
inated by one group. This heterogeneity makes identification more challenging
than the uniform shift design.

Table 8 summarizes the simulation parameters.
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Table 8: Simulation Parameters: Complex Confounding Structure

Parameter Value

Employers (J) 100
Male items 5,000
Female items 5,000
Latent dimension (d) 10
Male characteristic clusters 50
Female characteristic clusters 50
Cluster std (σ) 0.15
Observation rate (λ) 0.2
Match coefficient (β) 5.0
Bias std (σθ) 1.0
Model embedding dimension 8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Characteristic Dimension 1 (C1)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

C
ha

ra
ct

er
is

tic
 D

im
en

si
on

 2
 (C

2)

(A) Applicant Characteristics
(Separate Cluster Centers)

Male (T=0)
Female (T=1)
Male cluster centers
Female cluster centers

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Preference Dimension 1 (P1)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
ef

er
en

ce
 D

im
en

si
on

 2
 (P

2)

(B) Employer Preferences
(colored by true bias)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Tr
ue

 B
ia

s 
(

)

Figure 9: Latent spaces under complex confounding (separate cluster centers).
Panel (A) shows applicant characteristics with male (blue) and female (orange)
drawn from different Gaussian mixture components. Large markers indicate cluster
centers. Panel (B) displays employer preferences colored by true bias θj.
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Confounding Structure Visualization

Figure 9 visualizes the latent space structure under this alternative DGP. Panel (A)
displays the first two dimensions of applicant characteristics, with male and female
observations shown alongside their respective cluster centers. Unlike the shift de-
sign, confounding here arises from the spatial separation of cluster centers rather
than a systematic directional shift. Some regions contain primarily male charac-
teristics, others primarily female, with substantial overlap where cluster centers
happen to be proximate. Panel (B) shows employer preferences colored by their
true bias parameter θj. As in the main simulation, bias is independent of prefer-
ences by construction.

Table 9 reports estimation performance under the complex confounding structure.
HCF+DML maintains its advantage over naive OLS estimation, achieving higher
correlation with true bias parameters and substantially lower systematic bias. The
method successfully recovers individual-level bias even when confounding patterns
are heterogeneous across the characteristic space.

Table 9: Estimation Performance: Complex Confounding Structure

Method Correlation Mean Bias Rel. Bias RMSE MAE

HCF+DML 0.9272 0.0004 0.007 0.0217 0.0177
OLS 0.8310 0.0055 0.102 0.0330 0.0264

Notes: Relative bias is computed as Mean bias/SD(θtrue). In this simulation,
SD(θtrue) = 0.054.

Figure 10 compares estimated versus true bias parameters for both methods. The
DML estimates cluster more tightly around the 45-degree line, indicating better
recovery of individual-level heterogeneity. OLS estimates exhibit greater dispersion
and systematic deviation from ground truth due to uncontrolled confounding.

These results demonstrate that HCF+DML is robust to the functional form of con-
founding. Under the more challenging separate-clusters design, where confounding
is heterogeneous and non-directional, the method continues to outperform naive
OLS estimation in recovering true individual-level bias parameters. This robust-
ness is important for empirical applications where the precise nature of confounding
between treatment and latent characteristics is unknown.

The key insight is that collaborative filtering embeddings capture the relevant
structure of the characteristic space regardless of whether confounding manifests
as a uniform shift or through more complex distributional differences. By learning
embeddings that predict outcomes, the method implicitly controls for whatever
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Figure 10: Estimated versus true bias parameters under complex confounding.
Panel (A): HCF+DML estimates. Panel (B): OLS estimates. Dashed line indicates
perfect recovery.

characteristic patterns drive rating variation, enabling valid causal inference about
individual-level bias.
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